Radar level measurement provider with Kaidi86

Radar level measurement supplier factory with kaidi86.com: Radar level meter adopts non-contact measurement, and has the advantages of high measurement accuracy, not affected by process conditions, easy to install and easy to maintain, so it is widely used in offshore oil platforms in recent years. Today, we would like to take you through several actual cases in offshore oil platform to understand the reasons and solutions of the radar level meter’s measurement value jumping. The first case was an oil field where the radar level meter in the left crude tank jumped to full scale several times during production. A sealed metal cover was used to cover the main body of the sensor, and during the test, it was found by connecting the radar level transmitter that the closed metal cover would result in more false signals throughout the measurement range, and the overall noise line would rise. See extra info at radar level sensor.

The influence of dust accumulation on the transmitter head of the radar level meter, due to the large amount of dust in the working condition of the radar level meter, the dust is easy to adhere, and affected by the ambient temperature, the dust is wet and easy to agglomerate, and the dielectric constant will become larger and adhered The transmitter head and the wall of the bell mouth of the radar level meter affect the accuracy and stability of the radar measurement.

What are the characteristics of radar water level meter? All measuring components are designed in an integrated manner, and there is no mechanical wear during measurement. Because the measurement is a non-contact measurement, it is not affected by the physical properties such as the density and concentration of the water body, it is not easy to be washed away by floods, has a long service life and is easy to maintain. The advantages of the radar level transmitter are obvious. The editor warmly reminds that to choose the right one, it is still necessary to meet your own situation.

For more accurate measurement in deaerators, magnetrol guided wave radar (GWR) is a preferred option. Since its performance and accuracy are not contingent on the specific gravity and/or inference, it can provide reliable measurements in all situations, including the difficult and turbulent process conditions of deaerators and feedwater heaters. In addition, GWR does not require external inputs or calibration to achieve specified performance. This effectively eliminates the introduction of errors during the calibration process or from external sources, i.e., pressure and temperature. With this high level of accuracy, operators can trust that their deaerators will be well controlled.

In addition, some silos in cement plants are very high, such as homogenizing silos of 50cm. It takes time and energy to board high silos to debug radar, so it is recommended to choose HART handheld operators that can be debugged remotely in the central control room. In the central control room, the range and other basic parameters can be set, and the radar echo waveform can be observed, and the waveform can be used for remote diagnosis and debugging, greatly reducing the on-site work intensity of the staff, to avoid the risk of climbing operation. The smart radar level gauge commonly used at present also has a function similar to “driving recorder”, that is, when the material surface mutation occurs on the scene, it can capture the radar echo waveform at that time, which is very useful for debugging the silo under complex conditions.

With emphasis placed on customer satisfaction, innovation, product development and overall business transformation, the company continued to innovate and expand with each passing year. KAIDI has successfully achieved global recognition, obtaining the leading position as Asia’s top process automation sensor manufacturer. In the past 5 years, the company has undergone tremendous growth and development – flourishing internationally and providing customers worldwide with the best customized solutions for process automation. Discover extra info at kaidi86.com. Suitable for chemical industry, petroleum industry, metallurgical industry, water conservancy and electronic industry, etc.

The interference comes not only from the outside, but also from the inside of the radar level gauge, such as interference caused by wires, inductance and capacitance between the power transformer and electronic components. In addition, the internal components can also generate noise interference. Today, most radar level gauges have also begun to be improved, using high-frequency microwave technology, which greatly improves the performance of the level gauge and reduces interference.

Working principle: Working principle of radar level gauge: UHF electromagnetic waves are transmitted to the liquid level of the container under test through the cable or antenna. When the electromagnetic wave touches the liquid level and is reflected back, the instrument detects the time difference between the initial wave and the echo, thereby calculating the liquid level height. Select guided wave radar or airborne radar according to the dielectric constant and measurement length of the measured medium.

Remote Accessibility – Industrial processes often span across intricate and complex facilities. IIoT radar sensors grant operators and engineers the ability to access data remotely eliminating the need for physical proximity to the sensor. This functionality simplifies troubleshooting, reduces response times to irregularities and minimizes periods of inactivity. Predictive Maintenance – One of the advantages of IIoT-enabled radar sensors is their capability to anticipate maintenance requirements. By analyzing data patterns these sensors can forecast when maintenance or calibration will be necessary, allowing for intervention before problems escalate. This predictive maintenance feature significantly improves equipment reliability and lifespan.

Rod antenna: generally used in strong corrosive environments, with weak anti-interference ability and small range; Flare antenna: stronger anti-interference ability, suitable for more complex environments. The larger the bell mouth, the more concentrated the energy, and the larger the measuring range; Parabolic antenna: the focusing effect is stronger than that of the bell mouth, the anti-interference ability is the strongest, and the range is the largest.